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1 Linear regression

In this problem, we are given a data set D = {Zm, tm }mef1,2,..,n}, that is to
say N points of 2, which we want to represent by a function y = ax + b.
We note further y,, = az,, + b.

You surely have encountered the ‘least-square fitting’ method in which
the error Ep = YN _ (t,, — ym)? is minimised to identify the most suitable
parameters a and b. This is easily done by solving:

OFp
=0
da
O0Ep
ob 0
which leads to:
a NSXT — SXST
M NSxx — Sx°
b SxxSr — SxSxr
M NSxx — Sx2

N N
where Sx = > 1 Tm, SxT7 = X1 Tmlm, €tc.
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Figure 1: A dataset generated from y = z by adding a random noise with
gaussian distribution of variance 0.15.
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2 Bayesian approach to the problem

As mentioned earlier, we can denote H our hypothesis ‘the data can be fitted
with a line, te y = ax 4+ b’. Our problem is to evaluate:
P(D|a,b, H)P(a,b|H)

P(D|H)
Recall that P(a,b|H) is the prior, ie what we think of the values a and b
might take before we have seen the data.

P(a,b|D, H) =

2.1 Choosing a prior

We will assume that the dataset has been normalised in [—0.5 : 0.5] in both
x and t. If the data fit perfectly a straight line, it should have ¢ = 1 and
b = 0, however if the noise level is high, these parameters may be significantly
different. We might therefore want to chose a prior which is maximum for
a =1 and b= 0, or for simplicity a flat prior (that is, we assume that a and
b take any value in given intervals with uniform probabilities).
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Figure 2: Prior on w1 (a) and w2 (b), flat over the region we would hope the
parameters to fall in (o, = 10).

In this example, we will attribute to a and b the same prior as would be
used in more complex regression methods (discussed later), that is:

1 a? + b?
P(a,b|H) = 52 exp (— 557 )

w
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and let o, be large so that the prior will be almost flat in the region where
we hope the parameters will be (a close to 1, b close to 0).

Note that this prior is chosen for convenience but will favour (if a small
value of o, is chosen) values of @ close to 0 rather than 1, which does not
make sense.

2.2 The likelihood

We now need to evaluate P(D|a,b, H), the probability of the data given
some parameters ¢ and b. What exactly can we mean by probability of
data ? Certainly, the dataset is given ?

To attribute a probability to the data, we need to define a noise model:
the targets t,, are in fact measurements of some ‘real’ values y,, with a noise
V.-

tn = Ym + Um
where y,, = ax,,, + b. If we can estimate the probability distribution of the
noise that may occur during any measurement, we can in turn attribute a
probability to the distance between the actual data t,, and the predicted
value y,, which we think is the ‘real’ one.

This noise is typically attributed a gaussian distribution of zero mean and

mean o,:
1 Upm?
Plvm) = 2mo,? P <_ 20,,2>

the probability of the data can therefore be thought of as:

N
P(Dla,b,H) = P(vi,va,...,vnla,b,H) = [] P(vml|a,b, H)
m=1
1 Z%:l Vm2
(270,2)N/? P 20,2
1 i (tm —
_ exp <_ Zm;l(

(270,2)N/? 20,°

ym)2) 1)

Note how the set (axp, byrp) which minimises Ep as defined earlier, now
maximises the likelihood.

2.3 The posterior distribution
Having defined the prior and likelihood, we have:

_ P(Dla,b, H)P(a,b|H) _ P(D|a, b, H)P(a,b|H)
Pla,b|D, H) = P(D|H) = 1.1, P(Dla, b, H)P(a, b|H)dadb
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Figure 3: The likelihood P(D|w, H) for the data in figure 1, having assumed
0, = 0.2. Note that the curve has been normalised for easy representation.
Given that the prior is flat over the region, the posterior distribution would
look exactly the same as the likelihood.

If we are trying to evaluate the most probable parameters ayp and bysp, the
normalising constant is irrelevant and it is sufficient to know that:

E a® + b?
P(a,b|D, H) x exp (— 20D2) exp (— 5 2 > (2)

v

To simplify further calculations, we approximate this distribution to its
274 order Taylor expansion around (axp,byp). Let us note

M(a,b) = (Ep/20,°) + ((a” + 1) /204")

giving the Taylor expansion around the minimum:
1

M(CL, b) ~ M(G,Mp, bMP) + §AWTAAW (3)
where A = VV(Ep + (a? + b?)) is evaluated in (app,bap), with V =
(0/0a,d/0b); Aw refers to the vector (a — ayp,b — byp), and from now
on, w refers to (a,b). With the help of 2 and 3, we have:

P(w|D, H) ~ P(wasp| D, H) exp (-%AWTAAW) (4)

which is a gaussian centred in wy,p, of variance matrix A~
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2.4 Prediction and error bars
Calculation of y for a new datum can now be accompanied by an error bar:

if we consider the Taylor expansion of y around (wpyp):

Y(@n+1, W) R Y(@ns1, Wap) + AW VY wyp (5)

With this linearisation, the distribution of y(zx41, w) is conditioned by
that of w, and its variance is:

Vy|T A_lvy‘WMP

WMP

This is analog to the case of a single random variable Z' = aZ + 3 for
which:
var(Z') = o*var(Z)



